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The work of Parr and Liu has prompted a further study of the homogeneity properties of 
the kinetic energy functional of an inhomogeneous electron liquid. The exact results are 
confirmed by the example of the self-consistent Thomas-Fed atom. 

Keywords; Chemical potential; eigenvalue sum 

1. BACKGROUND 

One of us [l] has recently demonstrated that the functional derivative 
ST/Se(r) of the kinetic energy T with respect to the electron density 
e(r) takes the form for the self-consistent Thomas-Fermi (TF)  atom 

where ck  = (3h2/10rn)(3/87r)2'3 and 1 = (1/4)(7r/3)'/3ao; a0 = h 2 / r n 2 .  
The purpose of this investigation is to discuss, motivated by Eq. (1) 

and the treatment of its homogeneity properties by Parr and Liu [2], 
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346 A. NAGY AND N. H. MARCH 

more generally the kinetic energy in the above context. Parr and Liu 
[2] showed that both the interacting 

and the noninteracting 

kinetic energy is a functional homogeneous of degree one in density 
scaling. 

These results, however, lead to certain difficulties, as they empha- 
sized in their third paper [3]. Presenting it in somewhat different form, 
we will study it in the following. 

2. HOMOGENEITY PROPERTIES OF KINETIC ENERGY 

Using the Kohn-Sham equations 

the noninteracting kinetic energy has the form: 

where 

is the eigenvalue sum. Making use of the Euler equation 

we readily obtain 
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As the chemical potential p is not equal to EJN there is a contra- 
diction between Eqs. (3) and (8). (For more discussion of the chemical 
potential see [3].) 

In a similar way, we can notice a contradiction between Eqs. (l), (3) 
and the Thomas-Fermi kinetic expression. It is shown in the Appendix 
that applying Eq. (l), that is true on the minimum, 

On the other hand, making use of the well-known Thomas-Fermi 
expression 

and its functional derivative 

we arrive at the result 

which is again different from Eq. (3). Parr and Liu, in their third 
paper [3] proposed a way to resolve this contradiction which we are 
going to discuss in the following and illustrate with the example of the 
self-consistent Thomas-Fermi atom. 

3. KINETIC ENERGY WITH CONSTRAINT 

Parr and Liu, in their third paper [3] emphasize that for any differ- 
entiable functional ern], one has 

g =  ($) +constant, 
be N 
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i.e., the functional derivative taken at constant N is different from 
the general functional derivative considered above. The constant in 
Eq. (13) is completely arbitrary, which follows from the fact that we 
can always add a constant to the functional derivative, since be 
integrates to 0. However, in a particular case, e.g., the noninteracting 
kinetic energy of a given system, we can ascribe the constant a definite 
value. (It is analogous to the determination of a constant in the inte- 
gration of a function.) 

Instead of Eq. (3), we take an equation in which the general func- 
tional derivative is replaced by the functional derivative taken at con- 
stant N. Thus we arrive, using Eq. (13) with Q = T, at the result 

Comparing Eqs. (8) and (14) we obtain the physical 
constant b: 

- Es 
N 

& = -  

(14) 

meaning of the 

(We mention in passing that the constant b had already implicitly 
been used in the work of Parr and Liu [3].) 

We now return to the self-consistent Thomas-Fermi atom char- 
acterized by an electron density satisfying the Euler equation: 

Using again Eq. (13) with Q = TTF one finds, by subsequent multi- 
plication of Eq. (1 3) by e and integration that for 
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Hence from Eqs. (10) and (1 1) we obtain 

denoting the constant by bTF. But for the neutral Thomas-Fermi atom 
under constraint 

and hence 

The final step is to use the relation between the eigenvalue sum and the 
total energy for the Thomas-Fermi atom, first given by March and 
Plaskett [4]: 

2 
E - - E T F  

"-3 

and hence 

This agrees with Eq. (15). 
The constant b in Eqs. (15) and (24) is expressed by Lagrange mul- 

tiplicators, they are considered to be really constants, so the homoge- 
neity of order one is preserved. 

In summary, we have emphasized that the constant b in the Parr-Liu 
treatment of the kinetic energy functional expressed in terms of the 
eigenvalue sum and the highest occupied eigenvalue resolves the dis- 
crepancy in the Kohn-Sham and Hohenberg-Kohn treatment of the 
kinetic energy. The result is confirmed by the example of the neutral 
Thomas-Fermi atom. 
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APPENDIX A. ONEDIMENSIONAL CASE 

In this one-dimensional example, the customary procedure of the 
calculus of variations [5] allows us to write, with a generalized TF 
(TFG) assumption that the kinetic energy tlunit length is a function 
only of e, e‘ and d’, 

Motivated by a very recent study of Parr and Liu [2], we multiply of 
both sides of Eq. (25) by e(x) and integrate from -w to w. Then, af- 
ter integration by parts and subject to the vanishing of contributions at 
the limits one readily finds 

Of course, the restriction to just three terms on the RHS of Eq. (26) is 
explicitly the result of the assumed closure of the kinetic energy density 
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t at p” in writing Eq. (25). If we now, again following Parr and Liu 
[2], require that T is homogeneous in e of degree one, then it is a 
straightforward matter to recover Eq. (9) for our admittedly limited 
case of truncation at el’. With the above one-dimensional case as 
motivation, let us turn to the explicit three-dimensional form of the 
functional derivative of the noninteracting kinetic energy in the self- 
consistent Thomas-Fermi atom, already displayed in Eq. (1). 

APPENDIX B. THREE-DIMENSIONAL CASE 

As the first step, let us construct the 3-dimensional generalization of 
Eq. (25) 

and hence 

We now assume, consistently with Eq. (9) that in the 3 dimensional 
case the kinetic energy density tTF(r) is given by 

where use has been of Eq. (1). Hence 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
0
0
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



352 A. NAGY AND N. H. MARCH 

Taking the terms of the right hand side of Eq. (28) in turn, one then 
finds 

and 

Hence returning to Eq. (28) one sums Eqs. (31)-(33) to find 

~ T T F  v2e(ve)2 + 2 / (ve14 dr, (34) 
/ e % d r = - /  [?-2c d 

which is simply again the Parr-Liu relation (9). 
However, while the above argument strongly points to the cor- 

rectness of the expression (29) for the kinetic energy density tTF(r) of 
the Thomas-Fermi atom, direct formation of the functional derivative 
STTF/Se(r) leads one to higher partial derivatives, which we have not, 
to date succeeded in eliminating. We expect that the differenti- 
ated Thomas-Fermi Euler equation will have to be used for such 
elimination. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
0
0
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1


